

# Progress Report November 2014 Acoustic detection of fish bombing



Elizabeth Wood and Jamie Valiant Ng

LIGHTHOUSE FOUNDATION





#### **Contact information**

Dr Elizabeth Wood: Marine Conservation Society; Semporna Islands Project Manager. <u>ewood@f2s.com</u>; <u>elizabeth.wood@mcsuk.org</u>

Jamie Valiant Ng: Semporna Islands Project: Sabah Coordinator and Field Officer jmieval@hotmail.com

Sabah Parks, PO Box 163, 91307 Semporna, Sabah, Malaysia PO Box 10626 Kota Kinabalu, Sabah <u>www.sabahparks.org.mysabahparks@gmail.com</u>

Marine Conservation Society, Over Ross House, Ross Park, Ross-on-Wye, Herefordshire, HR9 7QQ www.mcsuk.org email info@mcsuk.org

> Semporna Islands Project www.sempornaislandsproject.com

#### Acknowledgements

We are indebted to the Lighthouse Foundation for helping to fund this programme and to Sabah Parks for logistical support, especially boat transport and the involvement of staff from Tun Sakaran Marine Park. We would like in particular to thank the following staff from Sabah Parks for their assistance: Boni Antiu, Rashid Nulasik, Abdul Hafiz Bin Matlah, Masman Mayang, Razalie Bin Patiha, Rizan Jonggi, Nasir Malail and Tommy Terlington. In addition, we are grateful to Mohd Amir Hafiz Bin Musa, (practical student from Universiti Putra Malaysia) for his help with fieldwork.

We are also indebted to Richard Baggaley, Douglas Gillespie, Jamie MacAulay, and Graham Weatherup from St Andrews University and St Andrews Instrumentation Limited (SAIL) for their constant support and technical advice.

#### Citation

Wood E.M and Ng J.V. 2014. Progress Report November 2014: Acoustic detection of fish bombing. Semporna Islands Project/Marine Conservation Society. 15 pages.

# Progress Report November 2014: Acoustic detection of fish bombing

# CONTENTS

| Introduc | ction                                       | 1  |
|----------|---------------------------------------------|----|
| Phase 1  | . Research and development                  |    |
| 1. Train | ing at St Andrews                           | 2  |
| 2. Colle | ction of acoustic data                      | 2  |
| 2.1.     | Purpose                                     | 2  |
| 2.2.     | Design and construction of hydrophone frame | 3  |
| 2.3.     | Deployment of the hydrophone frame          | 4  |
| 2.4.     | Data recording                              | 7  |
| 2.5.     | Sites and results                           | 8  |
|          |                                             | 10 |
| Phases 2 | 2 and 3: activities and next steps          | 13 |

## INTRODUCTION

## Background and rationale

Fish bombing causes significant habitat destruction, loss of biodiversity and negative impacts on fisheries, tourism and economic development. Despite being illegal, it still persists in Sabah because it yields a relatively large 'catch' in a short time and with little effort. Fish bombers use stealthy tactics to avoid being caught and increased surveillance and enforcement are urgently needed to halt this practice.

## Objectives

The aim of this project is to develop and deploy an acoustic system that will detect and locate fish bombs in real time and allow immediate action to be taken to apprehend the perpetrators.

Sabah Parks staff will be involved and trained in all data gathering and operational procedures and the findings will be widely disseminated, so enabling use of the methodology in other problem areas.

## Location and duration

The acoustic detection programme is taking place in and around the Tun Sakaran Marine Park, Sabah. This area is famed for its high marine biodiversity but coral reefs in the Park have, and continue to be, badly damaged by fishermen who use explosives. The research and development phase began in July 2013 and the project is scheduled to end in July 2015, when the system will be fully operational.

## Activities to achieve objectives

#### Phase 1

Research and development: capture acoustic data through hydrophone mobile unit deployed at various locations within the Park.

## Phase 2

In the laboratory, isolate the sounds of fish bombs from other ambient noises and configure the system software.

## Phase 3

Assemble the system hardware and software and deploy the 'listening unit' in fish bombing hotspots.

This progress report covers Phases 1, 2 and the start of Phase 3. Phase 3 will be covered in detail in the final report, scheduled for June 2015.

## PHASE 1: RESEARCH AND DEVELOPMENT

## 1. Training at University of St Andrews

Introduction to the equipment and familiarisation

The initial plan was to bring research staff over from St Andrews University Sea Mammal Research Unit (SMRU) to collect acoustic data and train project and Sabah Parks staff. However, this proved impossible due to the security situation in Sabah (armed invasion in the Semporna area from Sulu militants, followed by kidnappings) which resulted in official advice from the UK government not to travel to Sabah's east coast. After waiting for several months, during which time the security situation did not improve, Jamie Ng (SIP, project co-ordinator) and Boni Antiu (Tun Sakaran Marine Park Manager) travelled over to University of St Andrews for training and to collect equipment necessary for data collection. This was accomplished in September 2013.



Figure 1. Jamie Valiant Ng being trained to set up the acoustic system by Jamie MacAulay at St Andrews University.

## 2. Collection of acoustic data

## 2.1. Purpose

For the first phase in the work, it was necessary to make underwater recordings of fish bomb explosions and other ambient sounds such as boat engines, divers and noises from the reef itself, such as snapping shrimps. This acoustic information is needed in order to be able to isolate and 'classify' the signal generated by fish blasts and then build the software and hardware system that will be set in place to detect fish bombs in real time.

#### 2.2. Design and construction of hydrophone frame

A cluster of three individual hydrophones was required In order to ensure that the underwater sounds provided acoustic data that could be effectively analysed. The hydrophones (purchased from SA Instrumentation (SAIL - St Andrews, UK) had to be arranged and deployed in a particular way, as specified by SMRU.

Specifically, the hydrophones needed to be at an equal distance from each other and at least 1m apart. They also needed to be maintained at the same level in the water, at an angle of  $90^{\circ}$  to the sea surface. In order to meet these criteria we designed a sturdy metal frame which was made to our specifications by a workshop located in Semporna (Figures 2 and 3).



Figure 2. Drilling holes for the clamp

Figure 3. Welding the frame

The frame was in the shape of a triangle and a clamp was added to one side (Figure 2). This was fixed with bolts and could be tightened up against a jetty leg or other fixed object (Figure 4).



Figure 4. Testing out the clamp at the workshop.

#### 2.3. Deployment of the hydrophone frame

In the first instance, the frame was deployed by fixing ropes at each corner that were then attached centrally to a rope that led to the surface. This method enabled the team to manage the depth of the hydrophones by adjusting the length of the rope. It proved possible to control the frame provided the water was perfectly still, but if there was any current then it was quickly pulled out of line, as shown in the Figure 5. It was noted that the sound clarity improved the deeper the hydrophones were deployed.



Figure 5. Diver trying to steady and level the frame as it hangs free from the boat.

It was clear that the frame needed to be attached to a structure that held it firmly at an angle of 90° to the sea surface and jetty legs were initially considered to be ideal because they were very secure. Unfortunately, the water depth at Pom Pom Island (the only jetty that overlooks TSMP) was too shallow at low tide. The jetties at Boheydulang and Selakan were unsuitable because sounds from the outer reefs (where fish bombs are used) would be blocked by islands and reefs. Thus the only option was to deploy the frame beyond the reef edge by some other means.

The first method used was to bolt the frame to T-bars that were attached to and weighted down by concrete blocks that held the hydrophones about 50cm from the seabed (Figure 6). This method of frame placement worked, but was laborious to set up because several divers were needed to get the apparatus in place and the heavy concrete blocks were difficult to manage underwater.



Figure 6. Attaching the acoustic frame to the concrete blocks

The second method entailed designing and making a metal, single-pole, 'ladder' to hold the triangular hydrophone frame.

The hydrophone frame was first clamped to the end of the metal pole (Figures 7 and 8) and then the pole and frame were lowered into the water (Figure 9) and the top of the pole hooked on to the edge of the boat. The 'ladder' could be deployed and retrieved quite easily by one or two people. The only problem encountered was when the sea was rough and it rubbed against the side of the boat, producing scraping noises that were picked up by the hydrophones.



Figure 7 (left). Hydrophone frame being clamped onto a horizontal plate welded onto the bottom end of the pole



Figure 8 (above) Pole and frame ready to be deployed.

#### Figure 9.

Hydrophone pole and frame being lowered into the water. The hook and support at the top fix the pole to the side of the boat.



For further stability, a rope was attached to the frame, run up to the boat and then pulled in the appropriate direction to ensure that the frame was lying horizontal in the water (Figure 10).







Figure 10. Above: Frame in position for recording. Top right: Frame showing the orange adjustment rope attached to one corner. Below right: Close-up of one of the three hvdrophones.

#### 2.4. Data recording

An 8m-long cable ran from each of the hydrophones to the boat where the recording equipment was set up. The cables were connected to a sound card (konnekt 24d) which recorded the high quality audio input and digitised the signals so they could be read by the laptop computer (Figs 11 & 12).



Figure 11. Hydrophone cables Attached tote sound card



Figure 12. Recording equipment set up on the boat, powered by a car battery.

Konnekt 24d was connected by a firewire cable to an express card inserted in the laptop. Dedicated software loaded onto the laptop converted and displayed the sound as a spectrogram image that was displayed on the screen. The three tracks represent the 3 separate hydrophone channels and the visibly high frequency sounds shown in Figure 14 are the signal of an exploding fish bomb.

The hydrophones provided a continuous stream of acoustic data and this was saved in segments that lasted 9 minutes and 45 seconds. Each segment was recorded as a separate file of approximately 640 megabytes and was automatically saved onto the hard drive.

Stabilised DC current for the laptop and sound card was delivered by an inverter connected to a car battery. If fully charged, the battery lasted 4-5 hours. It was then re-charged overnight, ready for the next day's fieldwork.

#### 2.5. Sites and results

The hydrophone frame was deployed at various localities both inside and outside the Park in an effort to pick up fish bomb sounds. Without prior knowledge of when and where bombs might be used, the only option was to set up the unit at localities where the hydrophones would cover as big an arc of water as possible without being blocked by reefs or islands. The hydrophones needed to be at a depth of around 4m or more where the temperature was reasonably consistent.

The hydrophones were deployed mainly at Sebangkat and Sibuan but also at Pulau Pom Pom jetty and Larapan (Figure 13 and Table 1). Most of the recordings were made using the frame suspended from the boat (Fig 10).

Recording was carried out for a total of 102 hours 01 minutes hours (total time hydrophones connected up and recording) at six localities (Table 1). During this time 23 bomb sounds were heard (Tables 1 and 2). This is equivalent to one every 4.4 hours.



r

Figure 13. Locations where the hydrophone frame was deployed (full details are in Table 1).

| Table 1. Site and recording details for the | hydrophone frame |
|---------------------------------------------|------------------|
|---------------------------------------------|------------------|

| Date/<br>2014 | Time        | Location  | GPS          | Summary             | Number of<br>hours |
|---------------|-------------|-----------|--------------|---------------------|--------------------|
| 11 Feb        | 1018 - 1321 | Pom Pom   | N 04 35 409  | No fish bomb sounds | 3 hours            |
|               |             |           | E 118 51 874 | detected            | 03 minutes         |
| 12 Feb        | 1010 -1220  | Pom Pom   | N 04 35 409  | No fish bomb sounds | 2 hours            |
|               |             |           | E 118 51 874 | detected            | 10 minutes         |
| 13 Feb        | 1002 - 1245 | Maiga-    | No           | No fish bomb sounds | 2 hours            |
| _0.00         |             | Selakan   | coordinates  | detected            | 43 minutes         |
|               |             |           | taken.       |                     |                    |
| 15 Feb        | 0943 - 1400 | Sibuan    | N 04 39 233  | Fish bomb sound     | 4 hours            |
|               |             |           | E 118 39 410 | recorded            | 17 minutes         |
| 26            | 1539 - 1737 | Sibuan    | N 04 38 891  | No fish bomb sounds | 1 hour             |
| March         |             |           | E 118 39 327 | detected            | 58 minutes         |
| 27            | 0659 - 1148 | Sibuan    | N 04 38 891  | Fish bomb sound     | 4 hours            |
| March         |             |           | E 118 39 327 | recorded            | 49 minutes         |
| 01 April      | 0651 - 1204 | Sibuan    | N 04 38 850  | No fish bomb sounds | 5 hours            |
|               |             |           | E 118 39 347 | detected            | 13 minutes         |
|               | 1417 - 1624 |           |              |                     | 2 hours            |
|               |             |           |              |                     | 07 minutes         |
| 02 April      | 0708 -1211  | Sibuan    | N 04 39 233  | Fish bomb sound     | 5 hours            |
| •             |             |           | E 118 39 410 | recorded            | 03 minutes         |
| 05 April      | 0713 -1105  | Sibuan    | N 04 39 233  | No fish bomb sounds | 3 hours            |
|               |             |           | E 118 39 410 | detected            | 52 minutes         |
|               | 1403 - 1632 |           |              |                     | 2 hours            |
|               |             |           |              |                     | 29 minutes         |
| 06 April      | 0617 1144   | Sibuan    | No           | No fish bomb sounds | 5 hours            |
| •             |             |           | coordinates  | detected            | 27 minutes         |
|               |             |           | taken.       |                     |                    |
| 08 April      | 1256 - 1559 | Sebangkat | N 04 33 090  | Fish bomb sound     | 3 hours            |
| •             |             | C C       | E 118 39 576 | recorded            | 03 minutes         |
| 09 April      | 0637 - 1400 | Sebangkat | N 04 33 154  | Fish bomb sound     | 7 hours            |
| •             |             | 0         | E 118 39 765 | recorded            | 23 minutes         |
| 10 April      | 1312 –1522  | Larapan   | N 04 32 984  | No fish bomb sounds | 2 hours            |
| •             |             |           | E 118 36 797 | detected            | 10 minutes         |
| 11 April      | 0650 –1344  | Larapan   | N 04 32 841  | No fish bomb sounds | 6 hours            |
| •             |             |           | E 118 36 674 | detected            | 54 minutes         |
| 13 April      | 1038 –1523  | Sebangkat | N 04 33 095  | Fish bomb sound     | 4 hours            |
| •             |             |           | E 118 39 422 | recorded            | 45 minutes         |
| 15 April      | 1050 - 1501 | Sebangkat | N 04 33 054  | Fish bomb sound     | 4 hours            |
| •             |             |           | E 118 39 422 | recorded            | 11 minutes         |
| 10 July       | 1000 - 1350 | Sibuan    | N 04 38 891  | No fish bomb sound  | 3 hours 50         |

|         |             |           | E 118 39 327 | detected           | minutes    |
|---------|-------------|-----------|--------------|--------------------|------------|
| 12 July | 0825 - 1223 | Sibuan    | N 04 38 891  | No fish bomb sound | 3 hours 58 |
|         |             |           | E118 39 327  | detected           | minutes    |
| 12      | 1027 – 1244 | Sebangkat | N 04 33 095  | Fish bomb sound    | 2 hours 17 |
| August  |             |           | E 118 39 422 | recorded           | minutes    |
| 13      | 1114 - 1400 | Sebangkat | N 04 33 095  | Fish bomb sound    | 2 hours 46 |
| August  |             |           | E 118 39 422 | recorded           | minutes    |
| 15      | 0926 – 1254 | Sebangkat | N 04 33 612  | Fish bomb sound    | 3 hours 28 |
| August  |             |           | E 118 39 195 | recorded           | minutes    |
| 16      | 1341 - 1504 | Sebangkat | N 04 33 612  | No Fish bomb sound | 1 hour 23  |
| August  |             |           | E 118 39 195 | recorded           | minutes    |
| 17      | 0956 - 1422 | Sebangkat | N 04 33 612  | Fish bomb sound    | 4 hours 26 |
| August  |             |           | E 118 39 195 | recorded           | minutes    |
| 26      | 1105 – 1328 | Sebangkat | N 04 33 095  | Fish bomb sound    | 2 hours 23 |
| August  |             |           | E 118 39 422 | recorded           | minutes    |
| 27      | 1144 - 1404 | Sibuan    | N 04 38 851  | No fish bomb sound | 2 hours 20 |
| August  |             |           | E 118 39 333 | recorded           | minutes    |
| 29      | 0900 - 1213 | Sebangkat | N 04 33 612  | Fish bomb sound    | 3 hours 13 |
| August  |             |           | E 118 39 195 | recorded           | minutes    |



Figure 14. Example of the digitised acoustic data showing the 3 separate hydrophone channels and the visibly high frequency signal of an exploding fish bomb recorded simultaneously by each unit.

| Date<br>2014 | Location   | Recording time | GPS                         | Map<br>Reference | Time of Fish<br>bomb   | Audio<br>reference      |
|--------------|------------|----------------|-----------------------------|------------------|------------------------|-------------------------|
| 2014         |            | ume            |                             | (Figure 1)       | recorded               | relefence               |
| 15 Feb       | Sibuan     | 1000 -         | N 04 39 233                 | A                | 1322                   | PAM_20140215_           |
|              |            | 1400           | E 118 39 410                |                  | 1329                   | 052031                  |
| 27           | Sibuan     | 0700 -         | N 04 38 891                 | В                | 0936                   | PAM_20140327_           |
| March        |            | 1730           | E 118 39 327                |                  |                        | 013124                  |
| 02           | Sibuan     | 0710 -         | N 04 39 233                 | A                | 0950                   | PAM_20140402_           |
| April        |            | 1215           | E 118 39 410                |                  | Two fich               | 014131                  |
|              |            |                |                             |                  | Two fish<br>bomb sound |                         |
|              |            |                |                             |                  | recorded in            |                         |
|              |            |                |                             |                  | one minute.            |                         |
| 08           | Sebangkat  | 1300 -         | N 04 33 090                 | С                | 1518                   | PAM_20140408_           |
| April        |            | 1550           | E 118 39 576                |                  |                        | 070255                  |
|              |            |                |                             |                  |                        |                         |
|              |            |                |                             |                  | 1521                   | PAM_20140408_           |
| 09           | Sebangkat  | 0630 -         | N 04 33 154                 | D                | 1156                   | 071237<br>PAM 20140409  |
| April        | Sebaligkat | 1410           | E 118 39 765                |                  | 1150                   | 035035                  |
| 7.pm         |            | 1410           | 110 33 703                  |                  |                        | 033033                  |
|              |            |                |                             |                  | 1350                   | PAM_20140409_           |
| 42           |            | 4020           | N 04 00 005                 | -                | 4450                   | 053757                  |
| 13<br>April  | Sebangkat  | 1030 -<br>1534 | N 04 33 095<br>E 118 39 422 | E                | 1153                   | PAM_20140413_<br>034653 |
| April<br>15  | Sebangkat  | 1050 -         | N 04 33 054                 | E                | 1228                   | PAM 20140415            |
| April        | Jebangkat  | 1502           | E 118 39 422                |                  | 1220                   | 041739                  |
| 1-           |            |                |                             |                  | 1316                   |                         |
|              |            |                |                             |                  | 1310                   | PAM_20140415_           |
| 12           | Sebangkat  | 1027 –         | N 04 33 095                 | E                | 1204                   | 050612<br>PAM 20140812  |
| August       | Sebaligkat | 1027 -         | E 118 39 422                |                  | 1204                   | 035756                  |
| Magast       |            | 1277           |                             |                  |                        | 033730                  |
|              |            |                |                             |                  | 1229                   | PAM_20140812_           |
|              |            |                |                             |                  |                        | 042402                  |
| 13           | Sebangkat  | 1114 -         | N 04 33 095                 | E                | 1218                   | PAM_20140813_           |
| August       |            | 1400           | E 118 39 422                |                  |                        | 041243                  |
|              |            |                |                             |                  | 1240                   | PAM_20140813_           |
|              |            |                |                             |                  |                        | 043208                  |
|              |            |                |                             |                  | 1343                   | PAM_20140813_           |
|              |            |                |                             |                  |                        | 053838                  |
| 15           | Sebangkat  | 0926 –         | N 04 33 612                 | F                | 1036                   | PAM_20140815_           |
| August       |            | 1254           | E 118 39 195                |                  |                        | 022449                  |
|              |            |                |                             |                  |                        |                         |

## Table 2. Details of the locations where fish bomb sounds were recorded

| 17           | Sebangkat | 0956 –         | N 04 33 612                 | F | 1259 | PAM 20140817            |
|--------------|-----------|----------------|-----------------------------|---|------|-------------------------|
| August       |           | 1422           | E 118 39 195                |   |      | 044206                  |
| 26<br>August | Sebangkat | 1105 –<br>1328 | N 04 33 095<br>E 118 39 422 | E | 1228 | PAM_20140826_<br>042405 |
|              |           |                |                             |   | 1252 | PAM_20140826_<br>045131 |
| 29<br>August | Sebangkat | 0900 -<br>1213 | N 04 33 612<br>E 118 39 195 | F | 1132 | PAM_20140829_<br>031532 |
|              |           |                |                             |   | 1215 | PAM_20140829_<br>040405 |



## PHASES 2 AND 3: ACTIVITIES AND NEXT STEPS

The acoustic data files incorporating the 102 hours of recording were delivered to the research team at the University of St Andrews for analysis and to enable configuration of the software.

Some of the hardware was acquired in late 2013 for the preliminary data collection phase and the rest was assembled during the research and development phase at St Andrews (Sept-Nov 2014). This has been shipped to the Hong Kong office of St Andrews Instrumentation (SAIL) where training is scheduled for Dec 8<sup>th</sup> – 12<sup>th</sup> 2014. The total acoustic equipment acquired during 2013/2014 is shown below:



| 3 | Sets of 3 x HTI -90-U-PA-001 hydrophones with 8 meter cables.                                              |
|---|------------------------------------------------------------------------------------------------------------|
| 3 | Portable 12v 100watt Solar battery charging system complete with regulator, cables and battery connectors. |
| 3 | Micromark 2.4GHZ Collinear antenna complete with pre terminated 6 meter coaxial cables (see photo above)   |
| 1 | Microhard 2.4GHZ wireless modem receiver complete with power supply for base station                       |
| 1 | Laptop with configured software                                                                            |
| 1 | Training Manual                                                                                            |

Following systems training in Hong Kong, the equipment will be shipped to Sabah for installation.

Three recording stations will be established, with the base (receiver) unit at Sabah Parks Sibuan substation.

## BUDGET AND EXPENDITURE FOR 2014

|                                                                                                                                                    | Budget<br>GBP    | Expenditure up to<br>30/11/2014     |                               |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------|-------------------------------|
|                                                                                                                                                    | 2014             | From<br>other<br>sources            | From<br>Lighthouse            |                               |
| STAFF COSTS                                                                                                                                        |                  |                                     |                               |                               |
| Technical team SMRU: 6 people weeks                                                                                                                | 3,232            | 2054                                | 1178                          |                               |
| Project leader MCS 4 weeks                                                                                                                         | 2,134            | 850                                 | 750                           |                               |
| Local team: 6 people weeks                                                                                                                         | 1,220            | 760                                 | 550                           |                               |
| TRAVEL                                                                                                                                             |                  |                                     |                               |                               |
| UK travel + International flights UK to Sabah x 4                                                                                                  | 4,268            | 2,950                               | 850                           |                               |
| Domestic flights, taxis and other travel within Sabah                                                                                              | 915              | 287                                 | 500                           |                               |
| FIELD COSTS                                                                                                                                        |                  |                                     |                               |                               |
| Boat including fuel and crew                                                                                                                       | 3,049            | 2860                                |                               |                               |
| Daily-paid assistance during testing/installation                                                                                                  | 1,305            | 550                                 | 480                           |                               |
| Accommodation & subsistence for project team                                                                                                       | 3,049            | 2250                                | 230                           |                               |
| Training workshops/courses                                                                                                                         | 3,573            | 2,400                               |                               |                               |
| CAPITAL ITEMS                                                                                                                                      |                  |                                     |                               |                               |
| PAMBuoy <sup>™</sup> units in Peli format with 3<br>hydrophones, 2.4GHZ communications packs,<br>antenna and mounts. One unit                      | 18,293           | 11443                               | 6,850                         |                               |
| Solar panel systems with solar regulators and fixings x 3 units                                                                                    | 976              | 476                                 | 500                           |                               |
| GEL battery 120AmpH x 2 units                                                                                                                      | 183              | 200                                 |                               |                               |
| PAMBuoy <sup>™</sup> Base Station complete with 12.5"<br>i5 and all software in Pelicase format, 1 off<br>2.4GHz receiver, 1 off antenna and mount | 1,829            | 1829                                |                               |                               |
| Mobile phones x 2                                                                                                                                  | 183              |                                     |                               |                               |
| CONSUMABLES                                                                                                                                        |                  |                                     |                               |                               |
| Miscellaneous items for installation e.g. buoys, ropes, attachment fixtures                                                                        | 1,220            | 522                                 | 392                           |                               |
| Miscellaneous consumables including paper,<br>files, phone cards, batteries, external hard<br>drives.                                              | 610              | 384                                 | 98                            |                               |
| ADMINISTRATIVE AND MISCELLANEOUS<br>COSTS                                                                                                          |                  |                                     |                               |                               |
| Project administration and financial audit                                                                                                         | 1,220            | 1220                                |                               |                               |
| Insurance                                                                                                                                          | 305              | 305                                 |                               |                               |
| Contingency (e.g. for equipment maintenance, repairs)                                                                                              | 1,220            | 286                                 |                               |                               |
|                                                                                                                                                    | Budget<br>48,784 | Other<br>sources<br>spend<br>31,626 | Lighthouse<br>spend<br>12,378 | Total spend<br>30/11/2<br>44, |